1	Proof	C1	draws OC and considers angles in an isosceles triangle (algebraic notation may be used, eg two angles labelled x)
		C1	finds sum of angles in triangle <i>ABC</i> , eg $x + x + y + y = 180$, or sum of angles at <i>O</i> , eg $180 - 2x + 180 - 2y$
		C1	complete method leading to $ACB = 90$
		C1	complete proof with all reasons given, eg base angles of an <u>isosceles triangle</u> are equal, <u>angles</u> in a <u>triangle</u> add up to 180°, <u>angles</u> on a straight <u>line</u> add up to 180°

2	Proof	C1	for one correct pair of equal angles with correct reason from: angle ACB = angle ADB , (angles in the same segment are equal) angle DBC = angle DAC , (angles in the same segment are equal) angle ABD = angle ACD , (angles in the same segment are equal)	Underlined words need to be shown; reasons need to be linked to their statement(s)
			or for recognising all angles of 60 in triangle AED and in triangle CEB)	Pairs of equal angles may be just shown on the diagram
		C1 C1 C1	for one identity, with reason(s), from the following list of alternatives: Alternatives: a complete method to show that angle ACB = angle DBC (= 60), or BC being common to both triangles or BC being common to both triangles or BC being common to both triangles or BC angle BC = AE + BC = AE + BC = AC (sides of an equilateral triangle are equal) or angle ABC = 60 + angle ABD = 60 + angle ACD = angle DCB (angles in the same segment are equal) or angle BDC = angle CAB (angles in the same segment are equal) for a second identity, with reason(s), from the alternatives above for concluding the proof with a third identity, with reason(s), from the alternatives above, together with the condition for congruency, ASA or SAS or AAS	